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ABSTRACT: The question of the thickness of shock waves in a viscous 

gas was t rea ted in papers [1, 2] .  The present paper derives gene ra l  

equat ions for solving problems concerning the f low of a m e d i u m  inside 

a shock wave layer ,  and the  change  of this layer  in viscous med ia .  

By way of an e x a m p l e  we consider a problem of this type for a Kelvin  
m e d i u m .  

1. It is shown in paper  [3] that  d iscont inui ty  waves of zero th i ck -  

nesS cannot  propagate  in  viscous med ia .  We may  suppose that  as the 

resul t  of the ac t ion  of viscous forces in  such m e d i a  shock waves are 

rea l ly  a layer  inside which a rapid but continuous change  of a l l  func-  

tions takes p l ace .  The thickness of the shock wave layer  is not the same 
in different  p laces .  

In der iving the fundamen ta l  equations for solving the problem of 

viscous flow inside the shock wave layer ,  we shal l  m a k e  the fol lowing 

assumptions: 
a) The thickness of the shock wave layer  is s m a l l  and the leading  

and t ra i l ing  fronts of the layer  are pa ra l l e l  to each  other in  the first 

approximat ion .  
b) If the values  of some quant i ty  z are the same on both shock wave 

fronts, then  in the first approximat ion  this quant i ty  is independent  of 
the  coordinate  transverse to the shock wave layer ,  i . e . ,  

z ~  C for [z] ~ 0. (1.1) 

Here C is a funct ion independent  of the  transverse coordinate .  

e) If the quant i ty  z has different  values on the shock wave fronts, 

then  we shal l  neg lec t  its der iva t ives  in di rect ions  lying in the p lane  

t a n g e n t i a l  to the  fronts of the shock wave layer ,  compared with its 

de r iva t ive  in the transverse di rect ion,  i . e . ,  

~ , i = ~ , ~  v ~i for [z ]4=0.  (1.'~) 

Here z~ i, v k are the covar ian t  and con t rava t ian t  components  of the  

no rma l  to the shock wave layer  fronts. We note  tha t  the less the th i ck -  

hess of the shock wave layer ,  the more  accura te  re la t ion  (1.2) becomes.  

Since the shock wave layer  is th in  the dynamic  condit ions for dis- 

cont inui t ies  of dens i ty  p, v e l o c i t y  v i and stress [4] oij hold,  

[p (v n - -  C)] = 0, [Gijv 3 - -  p (v n - -  G) vi] = 0. (1.3) 

Applying (1.1) to these expressions we obtain 

p (v n - -  G) = C, ~i]~ ~ -- Cv~ = C~. (1.4) 

Here C is an arbi trary funct ion,  C i is an arbitrary vector  independent  

of the transverse coordinate .  The first equat ion of (1.4) was obta ined in 

paper  [1] .  
If the shock wave layer  only interacts  weakly  with the ma in  s t ream 

of the m e d i u m ,  t henby  ana logy  wi th  boundary layer  theory the problem 

is first of a l l  solved for the invisc id  flow of a m e d i u m  in which a shock 

wave moves .  In this case d y n a m i c ,  k i n e m a t i c ,  and geomet r i c  c o m p a t i -  

b i l i t y  conditions [4] are ful f i l led  at  the  shock wave .  subsequen t ly  the  

problem is solved for a shock wave layer  where the boundary condit ions 

on the fronts of the layer  are t aken  to be those for a shock wave in  in-  

v isc id  flow. 

The ve loc i ty  G m a y  be  t aken  to be the ve loc i ty  of propagat ion of 

some surface 2 s i tuated inside the shock wave layer  and p a r a l l e l  to its 

frontS. For s imp l i c i t y  this  surface may  be t a k e n  to be the  midd l e  sur- 

face  of the layer  where some function assumes i ts  m e a n  va lue .  
Lower indices  1 and 2 wi l l  denote  the values  of quant i t ies  at the 

t ra i l ing  and leading  fronts of the shock layer ,  respec t ive ly .  Since the  

m e d i u m  undergoes la rge  deformat ions  in the shock wave layer  the 

f in i te  nature  of these deformat ions  must  be a l lowed for when writ ing 

down the equat ions governing the s ta te  of the m e d i u m  in the layer .  

, , / /3  

2. In what follows we shal l  consider as an e x a m p l e  the problem of 

the thickness of a shock wave layer  and the f low inside this layer  in 

the case  of a Kelv in  m e d i u m  tak ing  into account  the  f in i te  magn i tude  

of the deformat ions  and the convec t ive  terms in de te rmin ing  the ve-  

loc i ty  during d i sp lacemen t .  In this cormect ion we shal l  t rea t  the prob- 

l em  of the propagat ion of a longi tud ina l  shock wave in an e las t ic  m e -  

d ium formulated  in  the same  way. The problem of shock wave prop- 
aga t ion  in an e las t i c  m e d i u m  where the s i tua t ion  is l i nea r i zed  was 

t rea ted in paper  [41. 
We sha l l  write Hooke's  law in the form 

: ~ e  & ~ §  1/2(ui, j % , d % , j )  (2.1) ~ ~ k . ,  2[*e~j, e~ = + u L ~ - , 

where u i is the d i sp l acemen t  vector .  

In order to s impl i fy  the problem we sha l l  choose the system of co-  
ordinates so tha t  its or igin l ies on the  surface ~,, and the  x 1, x z p lane  

coincides  with the tangent  p lane  of this surface.  We int roduce the no-  

ta t ion  

ul,a = u, u2,3 = z,, ++3,3 = w .  ( 2 . 2 )  

For a long i tud ina l  wave [u] = try = 0, [w] ~ 0. Determining  the 

ve loc i ty  through d i sp l acemen t  we find in  the first approx imat ion  

v3 = (u3, t - -  Gw) / (1 - -  w).  (2.3) 

Subs t i t u t ing (2 .1 ) - (2 .3 ) in to (1 .3 )  for i=3 ,  we obta in  an expression for 

de t e rmin ing  the propagat ion  ve loc i ty  for a l o n g i t u d i n a l w a v e  of a strong 

discont inui ty  in an e las t i c  m e d i u m  

( a  - -  ~a, t) ~" I - -  w2 (1 u'2) (1 - -  w~) (1  w~ + w2~ 
)~ q- 29 P'-' - -  - -  ~ - ~ ]  �9 (2.4) 

It follows from (2.4) tha t  if  wl and w 2 are sma l l ,  then a w e a k  long i -  

tud ina l  shock wave propagates  with the same v e l o c i t y  as a long i tud ina l  

a cce l e r a t i on  wave. If the  m e d i u m  is compressed on both sides of the 

surface (w < 0), then  i t  propagates  faster than an acce l e r a t i on  wave.  

If the m e d i u m  is s t re tched on both sides of the wave, its p ropaga t ion  

ve loc i ty  is less than the ve loc i ty  of an a c c e l e r a t i o n  wave.  For very 

strong extension when we or wl -+ 1, the propagat ion  ve loc i ty  of the 

shock wave decreases to zero. For strong compression when wz or 

w 1 ~ --,% the shock wave v e l o c i t y  increases  wi thout  l i m i t .  
3. We shal l  wri te  the  r e l a t ion  be tween  the stress and deformat ion  

tensors and the ve loc i ty  for a Kelv in  m e d i u m  in  the form [5] 

6~i = (~,ekk + g, ekk) ~3ij + 21Xeij + 2~lei~. (3.1) 

We have  from (2.3) 

( t - - w )  w , t - - ( a - - % . ~ ) w a  
v~,3 - (t - -  w)~ (3.2) 
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Simul taneous ly  solving the system of equat ions (1.4), (2.3), (3.1),  and 

(3.2)~ and tak ing  (1.2) into account ,  we obtain the fol lowing nonl inear  
equat ion  for the function w: 

( l - -w){ar  ~ - 3 a w  ~ @ [ C a - j - a ( 2 @ u  aq-  v 2)@ 

+ C ( G w - - U s . t ) l w - - [ C ~ + a  ( ~  + v~-)]} = 

= ( ~ - ! - 2 q ) [ ( G - - % , , t ) w , 3 - - ( l - - w ) w t ]  (a = ~/~ @ ~x). (3.3) 

We shal l  assume that  the viscosi ty does not affect  the flow at the 

leading and t ra i l ing  fronts of the shock wave.  In this case w r and wz 
are the roots of the po lynomia l  on the lef t  s ide of (8.3). Equation (3.0) 
may be wri t ten in the  form 

a (1 - -  w) (~  - wO (.'  - -  w. )  (w - -  w0) = 

= ( ~ + 2 ~ )  [ ( a - - u s ,  t) w,~ - -  ( t  - -  w) w , d  . (3.4) 

If wzw z ~ O, then the root is 

C 3 + a ( u ~ +  v~) 
w o =  aw, w2 (3.5) 

In the case of loading or unloading waves WrW z = 0 the root w 0 is 

W 0 
r  + a (2 + u~ + v~) + C ( a w - -  %,  t) 

a//J* 

w* = {w2 (wl = 0).  
wl (w~ = O) 

(3.6) 

In order to find an expression for the root w 0 in  terms of wl and wz, 

we sha l l  find the values  of Ca and C in  terms of quant i t ies  at  the shock 

wave,  Sett ing w = wz in the left  side of (3.3) and equat ing  i t  to zero 
we obtain 

c (aw~ - "s, ,) 
Cs = 2aw~ - -  aw~ ~ - -  a (~2 + v~) + t - -  w2 w2 �9 (3.7) 

From the first equa t ion  of (1.4) and (2.3) we have  

C = - - 0 3  (aw~ - -  u3, t) / (1 - -  w 2 ) .  (3.8) 

Substi tut ing (3.7), (3.8), and (2.4) into (3.5) and (3.6), respect ive ly ,  

we obta in  

wo = 3 - -  (wl  -}- w2), Wo = 3 - -  w * .  (3.9) 

Thus in  both cases (3.5) and (3.6) the  d i f ference  w c - w = 3 - (w + 

+ wl + ws) is posi t ive .  The lef t  side of (3.4) ins ide  the shock wave 
layer  is posi t ive.  

Equation (3.4) may  be  in tegra ted  in the quas i - s ta t ionary  s ta te  when 

w, t = 0. We s h a h  wri te  the  boundary condi t ion  in  the form 

When (3.4) is in tegra ted  with the condi t ion  (3.10), we obtain for 

the  case under considerat ion 

((7 - -  %, ,) (~, + 2n) 
~a ~ X 

�9 2 ( l - - w )  . 3 ( 2 - - w l - - w ~ )  
• al l n ~ w ~ w  2 ~- a2 In 2 ( w o - - w )  

we -- wl In 2 (w -- w 0 ], 
+ a ~ l n ~ + a ~  w~--Wr A 

i 
ar - (w0 - -  t )  ( t  - -  w~) (1 - -  w2) ' 

i 
a2 = ( W  0 - -  t )  (W 0 - -  Wl) (We - -  W2) ' 

i 
as = (l -- we) (wo~) (w~ -- wl) ' 

t 
~4 = (1 - - w l ) ( w o  - -  wl)  (we - -  w~) " 

§ 

(3.11) 

Equation (3.11) de te rmines  the va r i a t ion  of the quant i ty  w be tween 

the values  w I and w2. For x s ~ • the quant i ty  w rapid ly  approaches 

the asympto t ic  vahies  of Wz and w~ (Fig. 1). The m a i n  change  in  w 

occurs over a d is tance  of the order 

8 (G - -  %. t) (6 q- 2n) 
h --  3a (2 - -  wa - -  u'~)~(w~ - -  wl) " (3.12) 

which may  be regarded as the  thickness of the shock wave layer .  

It follows from (3.12) tha t  this thickness decreases  according as the  

shock wave in tens i ty  is larger,  the g rea te r  is  the compression on the  

med ium on one side of the shock wave, or the  smal le r  is the  coef f i -  

c ien t  of viscosi ty .  Thus very strong shock waves in  a Kelv in  m e d i u m  

cab  be t rea ted as waves with no thickness.  Weak shock waves in a 

quas i - s t a t i c  process are  very  th ick.  
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